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Abstract—Detecting financial fraud is essential for ensuring
the security and reliability of financial systems. While graph
neural networks (GNNs) have shown promise in modeling trans-
action networks, they often struggle to capture subtle struc-
tural patterns associated with fraudulent behavior. To address
this challenge, we propose FraudCenGCL, a graph contrastive
learning framework that enhances fraud detection by integrating
account-level features with graph-based centrality measures. By
combining behavioral attributes with structural indicators such
as degree, closeness, and betweenness centrality, our framework
enriches node representations that reflect both transactional
and topological characteristics. We evaluate FraudCenGCL on
real-world interbank transfer data from the housing finance
information network (HOFINET) in South Korea. Experimental
results demonstrate that our framework consistently outperforms
existing GCL baselines across six representative backbones and
multiple evaluation metrics. These findings demonstrate the
effectiveness of incorporating structural information to improve
the performance and practicality of fraud detection systems
(FDS).

Index Terms—fraud detection, graph contrastive learning,
bank transfers, graph analysis

I. INTRODUCTION

Financial fraud poses an ongoing threat to the security
and trustworthiness of financial systems, often exploiting the
structure of transaction flows to evade detection. Many fraud-
ulent behaviors do not manifest through isolated transactions
but rather emerge from coordinated patterns across account
networks. As such, effective fraud detection requires analyzing
not only transactional behaviors but also the structural roles
of accounts within the transaction graph. However, traditional
rule-based systems and conventional machine learning models
typically treat transactions as independent events, failing to
capture the positional and relational context that is critical for
identifying complex fraud patterns [1]-[5].

Graph neural networks (GNNs) have been widely adopted
for analyzing transaction data by modeling accounts and
transfers as nodes and edges, respectively [6]-[9]. In fraud
detection tasks, GNN-based models learn account relationships
through message passing and have shown promise in capturing
transactional dependencies. However, standard GNNs often
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(a) BGRL

(b) BGRL with FraudCenGCL

Fig. 1. Effect of centrality-guided augmentation in FraudCenGCL. The
embeddings are learned using BGRL [12] on our interbank transfer dataset.
(a) Without centrality features, the embeddings show poor class separation,
with fraudulent (red) and benign (blue) nodes highly entangled. (b) With
degree centrality used as an augmented view in FraudCenGCL, fraudulent
nodes form more compact clusters and exhibit clearer separation from benign
ones.

struggle with representing diverse structural roles of nodes
and may fail to differentiate subtle but critical behaviors in
fraud-related interactions. In particular, financial transaction
networks often exhibit low homophily, where fraudulent ac-
counts are more frequently connected to benign accounts
than to each other. This camouflage behavior undermines
the neighborhood similarity assumption of GNNs, making
them vulnerable in fraud detection settings [10], [11]. These
limitations become more pronounced in financial networks,
where fraudulent patterns often span multiple hops or emerge
through complex topological configurations.

Contrastive learning has recently emerged as a promising
self-supervised approach for capturing complex patterns in
financial transactions [13]-[15]. By maximizing agreement
between similar instances while pushing dissimilar ones apart,
contrastive learning enables models to learn discriminative em-
beddings without requiring extensive label supervision. This
property makes it particularly effective in financial domains,
where labeled fraud cases are scarce and subtle behavioral
differences are critical. Moreover, contrastive learning is well-
suited for graph-structured data, as it can enhance represen-
tation learning by leveraging both local and global structural
information.



Building on the success of contrastive learning, recent works
have combined it with GNNs to improve graph representation
learning [16]-[20]. These graph contrastive learning (GCL)
models typically learn embeddings by maximizing consistency
between multiple graph representations, including augmented
views (e.g., GRACE [20], MVGRL [18]) and corrupted inputs
(e.g., DGI [12]). However, most existing approaches focus
on either node-level attributes or global graph structures,
often neglecting the structural roles of individual nodes. This
limitation is critical in fraud detection, where the position and
influence of an account within the transaction network often
signal suspicious activity.

As shown in Fig. 1, the embeddings produced by the
BGRL model [12] without centrality augmentation (a) ex-
hibit significant overlap between fraudulent and benign nodes,
indicating limited class separation. In contrast, when degree
centrality is introduced as an additional contrastive view (b),
the embeddings form more compact and clearly separated
clusters. These results suggest that incorporating structural
role information such as centrality improves the discrimina-
tive power of node representations. Incorporating these roles
into contrastive learning provides a promising direction for
addressing the unique challenges of fraud detection in low-
homophily financial transaction networks.

In this paper, we propose fraud detection with Centrality
enhanced Graph Contrastive Learning (FraudCenGCL), a
novel framework that improves fraud detection in financial
transaction networks by incorporating account centrality fea-
tures into contrastive learning. FraudCenGCL enriches node
representations by combining behavioral features with graph-
derived centrality measures such as degree, closeness, and
betweenness. This design enables the model to capture both
transactional and structural patterns of accounts within existing
contrastive learning pipelines, without requiring additional
labels or architectural changes.

We evaluate our framework using the housing finance
information network (HOFINET) dataset, a large-scale real-
world dataset of interbank transfers operated by the Korea Fi-
nancial Telecommunications and Clearings Institute (KFTC),
the clearing house of South Korea. The HOFINET dataset
is proprietary and subject to strict regulatory constraints,
which makes it inaccessible to the public and rarely available
for research use. Unlike synthetic or benchmark datasets, it
directly reflects production-level financial transaction flows
across institutions, offering a uniquely realistic environment
for evaluating fraud detection models.

Experimental results show that FraudCenGCL consistently
outperforms baseline GCL models across six representative
backbones, with significant gains in precision, F1-score, and
AUPRC for detecting fraudulent entities.

The main contributions of this work are summarized as
follows:

e We propose FraudCenGCL, a contrastive learning
framework that integrates centrality-based structural fea-
tures with behavioral features, thereby improving the rep-

resentation of accounts in financial transaction networks
(Section IV-B, IV-E, IV-F).

e Our framework supports multiple centrality measures
(e.g., degree, closeness, betweenness) and can be applied
to diverse GCL backbones such as BGRL, GRACE, GBT,
DGI, and MVGRL without modifications to their core
architectures (Section IV-C, IV-D).

o Through extensive experiments on real-world interbank
transfer data, we show that FraudCenGCL achieves
consistent performance gains across all backbones and
evaluation metrics. These results indicate that incorpo-
rating structural role information improves the practical
effectiveness of fraud detection models in low-homophily
financial networks (Section IV-B, IV-F).

II. RELATED WORK

Graph-based models have been widely applied to analyze re-
lationships between accounts in financial transaction networks
and identify fraudulent entities from legitimate ones. Repre-
sentative graph neural networks (GNNs) such as GCN [6],
GAT [7], and GraphSAGE [8] have shown strong performance
in learning node connectivity and importance. Building on
these foundations, GNN-based fraud detection models have
been proposed to capture disguised behaviors and temporal
patterns in financial data [21]-[25].

Contrastive learning is effective in learning similarities
and differences between data points, making it suitable for
detecting subtle fraud patterns in financial datasets. SimCLR
uses data augmentations to bring samples of the same class
closer in embedding space [13], while MoCo improves train-
ing stability through memory-based negative sampling [14].
SupCon combines contrastive and supervised learning [15],
and PIRL [26] and BYOL [27] learn representations without
relying on negative samples. These methods are promising for
fraud detection, where labeled data is limited and behavioral
distinctions are subtle.

Recent works have integrated contrastive learning into
graph-based models to enhance representation quality.
DGI [16] captures global-local consistency. InfoGraph [17]
aligns whole-graph and subgraph representations. MV-
GRL [18] and GRACE [19] apply multi-view and feature
perturbation strategies, respectively. GraphCL [20] focuses
on structural diversity via augmentations. BGRL [12] and
GBT [28] further improve contrastive learning by avoiding
negatives or reducing redundancy.

However, most existing contrastive graph models emphasize
node features or global structures, while overlooking the struc-
tural roles of individual nodes. Prior studies have also shown
that conventional GNNs face difficulties in disassortative or
low-homophily graphs, where neighborhood aggregation fails
to capture long-range dependencies [11]. This challenge is
particularly important in financial transaction networks, where
the positional and structural influence of accounts often re-
flects suspicious behavior. To address this gap, we propose
FraudCenGCL, which integrates centrality measures into



the contrastive learning process to jointly model behavioral
attributes and structural roles of accounts.

III. PROPOSED METHOD

We propose FraudCenGCL, a contrastive learning frame-
work that jointly processes behavioral and structural features
for fraud detection in financial transaction networks. It incor-
porates account centrality measures as an additional structural
view that complements behavior-driven features. As shown in
Figure 2, the framework processes both aggregated transaction
features (from tabular data) and graph-structured information
(from graph data) to generate node embeddings that better
distinguish fraudulent accounts from legitimate ones.

A. FraudCenGCL Framework

FraudCenGCL consists of four key components: (1) graph
construction from interbank transfer data, (2) dual-source fea-
ture engineering that includes both behavioral and centrality-
based features, (3) GNN encoder that performs contrastive
learning over representations derived from heterogeneous fea-
tures, and (4) optimization via a contrastive loss function.
These components jointly enable the model to learn node
representations that capture both transactional patterns and
topological roles, which are crucial for downstream fraud
detection.

1) Graph Construction: We construct a directed graph
where each node represents a unique account and each edge
corresponds to a fund transfer between accounts. This transfor-
mation from tabular data captures the transactional topology,
including the directionality and intensity of account-to-account
interactions, enabling structural analysis of financial flows.

2) Graph Node Features: We extract two types of fea-
tures for each account node. First, behavioral features are
derived from aggregated transaction-level statistics, including
frequency, average amount, and variance. These features de-
scribe the individual activity patterns of accounts. Second, we
compute structural features using centrality measures such as
degree, closeness, and betweenness centrality. These features
quantify the importance and position of each node within the
transaction graph.

To ensure compatibility for joint representation learning,
we apply separate projection layers to map behavioral and
structural features into a shared latent space. These layers align
feature dimensions and semantics, enabling joint representa-
tion learning over distinct semantic signals.

3) GNN Encoder: The GNN encoder acts as the core
component of our framework, processing both account features
and centrality features to generate embeddings. This encoder
uses the graph structure to learn relationships between nodes
and their neighborhoods. Through this process, each account
node learns a representation that reflects not only its inher-
ent characteristics but also its structural position within the
transaction network.

Our framework implements a contrastive learning approach
based on separate feature channels that generates distinct
embeddings for account and centrality features. These feature

sources provide complementary semantic signals about the
accounts: one reflecting behavioral patterns and the other
capturing structural roles within the transaction network. The
resulting embeddings are then concatenated to form a unified
representation for each node, which is subsequently used for
contrastive optimization and fraud classification.

4) Loss Functions and Training: To train the model, we
apply a contrastive loss that encourages embeddings from
distinct feature representations of the same account to be
similar, while separating those of different accounts. This
objective shapes the embedding space to reflect structural and
behavioral distinctions, facilitating fraud classification.

The learned embeddings are then used in a downstream clas-
sification task. By incorporating both transactional behaviors
and structural roles, the resulting node representations enable
precise identification of suspicious accounts within financial
networks.

B. Graph Centrality Analysis

Centrality measures quantify the relative importance of
nodes in a graph. In the context of financial networks, they
help identify influential accounts based on their position and
connectivity [29]-[32]. We focus on three representative mea-
sures: degree, closeness, and betweenness centrality [33]. For
this analysis, we model the transaction network as a directed
graph, where each node corresponds to an account and edges
represent fund transfers from withdrawal to deposit accounts.

To formally define the centrality measures, let G = (V, E)
be a directed transaction graph where v € V denotes an
account and (u,v) € E represents a fund transfer from
(withdrawal) to v (deposit). We define the centrality measures
as follows:

o Degree centrality counts the total number of incoming
and outgoing transactions associated with a node:

Degree_Cen(v) = Z (Lwwyee + Lwuwer), @
ueV

o Closeness centrality measures how efficiently a node can
reach and be reached by other nodes:

1 1
Closeness_Cen(v) = < + ) , (2)
z;/ d(u,v)  d(v,u)

ue
where d(u,v) is the length of the shortest path from u to
.
+ Betweenness centrality reflects how often a node lies on
the shortest paths between other pairs of nodes:

Betweenness_Cen(v) = Z Locp(uiug)s (3
uy,u2€V

where p(u1,us) denotes the shortest path from u; to wus.

By formally defining these centrality measures and integrat-
ing them into our framework, FraudCenGCL is equipped to
capture both the behavioral signatures and structural roles of
accounts.
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Fig. 2. Workflow of the FraudCenGCL framework, integrating centrality and account features into contrastive learning by combining multiple semantic
sources in fraud detection. The framework leverages tabular and graph data to generate embeddings that capture both behavioral and structural patterns of

accounts, enhancing the discrimination of fraudulent accounts.

IV. EXPERIMENTS

In this section, we evaluate the proposed FraudCenGCL
framework by addressing the following research questions:

e RQ.1 How does FraudCenGCL perform compared to
existing GCL baselines in fraud detection?

RQ.2 What are the structural characteristics of fraudulent
accounts based on centrality measures?

RQ.3 How do different centrality measures contribute to
performance gains?

RQ.4 How does the choice of GNN encoder affect model
performance?

RQ.5 How does FraudCenGCL shape the structure of
the learned embedding space?

A. Experimental Setting

All experiments were conducted using PYTHON 3.8 and
PYTORCH 1.12 with CUDA 11.4 support. We utilized NET-
WORKX 2.8.4 for graph processing, and all models were
trained on an NVIDIA TESLA T4 GPU.

1) Datasets: We use the housing finance information net-
work (HOFINET) dataset, which contains real-world interbank
transfer transactions. Table II summarizes the dataset statistics,
and Table I provides the details of its feature fields.

Each node in the transaction graph corresponds to a unique
account, defined as a combination of a bank code and an
account number. A directed edge is created from a withdrawal
account (source) to a deposit account (target) for each transac-
tion, resulting in a multi-edge directed graph that reflects the
structure of the financial transfer network.

Fraudulent labels are assigned based on institution-reported
suspicion indicators included in the dataset. An account is
labeled as fraudulent if it appears as either sender or receiver
in any transaction marked suspicious. All other accounts are
considered benign. This strategy captures both direct and
indirect participation in potentially fraudulent activity.

We construct node features by aggregating transaction-level
information into account-level representations. Behavioral fea-
tures include statistical descriptors such as mean, maximum,

TABLE I
THE DETAILS OF THE HOFINET DATASET.

Field Description

The date of the transaction.
The time of the transaction.

Transaction Date
Transaction Time

Amount The amount of money.
Media Type Transaction medium (e.g., Mobile).
Fund Type Type of funds (e.g., salary).

Withdrawal Bank Code
Withdrawal Account Number
Deposit Bank Code

Deposit Account Number
Suspicious Indicator

Bank identification code.

Account number for withdrawal.

Bank identification code.

Account number for deposit.

Information indicating suspicious activity.

TABLE II
STATISTICS OF HOFINET TRANSFER TRANSACTION DATASET.

# Transfers

145,023

# Accounts

30,106

Time Range

Mar. 2024

# Suspicious

253 (0.1745%)

standard deviation, transaction count, and entropy-based mea-
sures for fields such as transaction amount, fund type, and
media type. Structural features are computed using graph-
based centrality measures, specifically degree, closeness, and
betweenness centrality, which capture each account’s position
and importance in the network topology.

2) Homophily Analysis: To better understand the structural
properties of HOFINET, we measure the homophily ratio ¢,
defined as:

{(u,0) € E: yu = yo}|

|E| ’
which quantifies the proportion of edges that connect nodes
with the same class label [34]. The dataset exhibits an imbal-
anced distribution: benign accounts show a high homophily
ratio (¢ ~ 0.99), while fraudulent accounts display a much
lower ratio (¢ =~ 0.41). This indicates that fraudulent accounts
are more frequently connected to benign accounts rather than
to each other, demonstrating the low-homophily nature of
real-world fraud networks. Such characteristics highlight why

4)

¢ =



TABLE III
PERFORMANCE EVALUATION OF THE FRAUDCENGCL FRAMEWORK
ACROSS VARIOUS GCL BACKBONES. ALL METRICS ARE COMPUTED ON
THE FRAUD (POSITIVE) CLASS. IMPROV. (%) INDICATES THE RELATIVE
IMPROVEMENT OF THE MODEL WITH FRAUDCENGCL OVER THE ORIGINAL

BACKBONE.
Model Precision Recall Fl-score AUROC AUPRC
BGRL 0.1177 0.4211 0.1839 0.7514 0.0852
+ FraudCenGCL 0.3214  0.6207 0.4235 0.8533  0.3096
Improv. 173.21% 47.41% 130.29% 13.57% 263.38%
DGI-IND 0.1453  0.7083 0.2411 0.8562 0.3217
+ FraudCenGCL 0.3177 0.8182 0.4576 0.9144 0.5986
Improv. 118.62% 15.51% 89.79% 6.80% 86.12%
DGI-TRS 0.0382 0.7143  0.0725 0.7427 0.1770
+ FraudCenGCL 0.1849  0.7857 0.2993 0.8738 0.4475
Improv. 384.33% 10.00% 313.08% 17.66% 152.78%
GBT 0.0552 0.7083 0.1024 0.8690 0.2352
+ FraudCenGCL 0.4314  0.7333  0.5432 0.9293 0.5084
Improv. 681.61% 3.53% 430.43% 694% 116.17%
GRACE 0.0178  0.7917 0.0349 0.7410 0.0696
+ FraudCenGCL 0.1539  0.9565 0.2651 0.9751 0.3201
Improv. 763.36% 20.82% 660.36% 31.60% 359.59%
MVGRL 0.0800 0.3077 0.1270 0.6655 0.1223
+ FraudCenGCL 0.1774  0.8800  0.2953  0.9458 0.3230
Improv. 121.76% 186.00% 132.56% 42.12% 164.14%

GNNs relying on neighborhood similarity face difficulties in
this domain, and motivate the design of FraudCenGCL.

3) Baselines: To assess the effectiveness  of
FraudCenGCL, we evaluate it on six widely used graph
contrastive learning (GCL) models by applying our framework
on top of their architectures:

1) BGRL [12]: A bootstrapped method that aligns node
representations between original and perturbed graphs
without using negative samples.

2) DGI [16]: A mutual information-based method that
contrasts local patch embeddings with a global summary
vector using a discriminator. The original version was
transductive (DGI-TRS), and an inductive (DGI-IND)
variant with sampling was later introduced for large
graphs.

3) GBT [28]: A Barlow Twins-based model that reduces
redundancy in embeddings across augmented views.

4) GRACE [20]: A dual-view contrastive method that uses
feature masking and edge dropping for augmentation.

5) MVGRL [18]: A multi-view learning approach that
contrasts node and graph-level representations across
structurally different views.

4) Evaluation Metrics: We evaluate model performance
using five widely used metrics for binary classification, par-
ticularly suitable for imbalanced data:

o Precision: The proportion of correctly predicted fraud
cases among all instances predicted as fraud. High pre-
cision indicates a low false positive rate.

e Recall: The proportion of actual fraud cases that are
correctly identified by the model. High recall reflects the
model’s sensitivity to positive cases.

e Fl-score: The harmonic mean of precision and recall,
providing a balanced evaluation between false positives
and false negatives.

We report all three metrics only for the fraud (positive) class

to reflect model performance on rare but critical cases.

¢ AUROC (Area Under the Receiver Operating Character-
istic Curve): A threshold-independent metric that quan-
tifies the model’s ability to rank fraud cases above non-
fraud cases.

o AUPRC (Area Under the Precision-Recall Curve): A
ranking-based metric that emphasizes the model’s ability
to identify rare positive instances, making it especially
informative in highly imbalanced settings where AUROC
may be misleading.

All metrics range from O to 1, with higher values indicating

better performance.

B. Performance Comparison (RQ.1)

Table IIT shows the performance of FraudCenGCL ap-
plied to six representative GCL backbones: BGRL, DGI-
IND, DGI-TRS, GBT, GRACE, and MVGRL. In all cases,
FraudCenGCL improves performance in fraud detection.

FraudCenGCL achieves substantial gains across all eval-
uation metrics. Fl-score improvements range from 89.79%
(DGI-IND) to 660.36% (GRACE), while AUPRC gains reach
359.59% (GRACE) and 263.38% (BGRL). Precision increases
markedly for GRACE (+763.36%) and GBT (+681.61%), indi-
cating that the framework effectively reduces false positives.
Recall gains are most pronounced for MVGRL (+186.00%)
and GRACE (+20.82%), showing that FraudCenGCL en-
hances the ability to recover true fraud cases. In terms of
AUROC, all models improve, with MVGRL (+42.12%) and
GRACE (+31.60%) showing the largest increases.

Lightweight backbones such as GRACE and GBT show the
greatest relative improvements, with F1-score increases of four
to six times compared to their baselines. By contrast, inductive
models such as DGI-IND, which exhibit stronger baseline
results, achieve smaller but still meaningful improvements.
Overall, FraudCenGCL enhances the precision-recall bal-
ance and ranking capability across diverse GCL architectures,
demonstrating robustness in fraud detection under varying
model settings.

C. Account Centrality Analysis (RQ.2)

Figure 3 shows the distributions of degree, closeness, and
betweenness centrality for accounts, separated by fraudulent
and benign classes. The box plots reveal distinctive structural
patterns between the two groups, providing insights into
how fraudulent accounts are positioned differently within the
transaction network.

For degree centrality, benign accounts show a long-tailed
distribution with a few extreme hubs (maximum about 0.41),
whereas fraudulent accounts never exceed a much smaller
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Fig. 3. Box plots of centrality measures for account graphs. Each plot compares the distribution of (a) degree, (b) closeness, and (c) betweenness centrality
between benign and fraud nodes. The plots highlight distinct structural characteristics of fraudulent accounts, such as higher variance and presence of extreme
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range (maximum about 0.0033). Despite lacking such hubs,
fraudulent accounts exhibit higher average and median val-
ues (mean about 2.8x10~%, median about 6.6x10~° versus
benign mean about 1.1x10~%, median about 3.3x107%), in-
dicating that mid-level connectivity is more common among
them. This implies that benign accounts are dominated by
many minimally connected nodes and a few hubs, while
fraudulent accounts are more evenly distributed at moder-
ate connectivity levels. Closeness centrality also highlights
differences. Fraudulent accounts have higher mean and up-
per quartile values (mean about 1.8x10~%, upper quartile
about 1.5x10~%) compared to benign accounts (mean about
6.4x1075, upper quartile about 6.6x 10~°). This may indicate
that some fraudulent accounts are strategically positioned to
access the network efficiently. Betweenness centrality shows
the clearest distinction. Nearly all benign accounts remain at
zero (mean about 3.2x107!!, maximum about 6.8x1077).
Fraudulent accounts, however, display a broader spread with
significantly larger values (mean about 6.1x 108, maximum
about 2.9x1076). This reveals that a subset of fraud nodes
serve as intermediaries or bridges in transaction flows.

These findings are consistent with prior research [35], which
emphasizes that nodes with relatively low degree but high
betweenness often play organizational or intermediary roles in
money laundering schemes. Our analysis shows that fraudulent
accounts avoid extreme hub positions but instead exploit mid-
level connectivity, higher reachability, and bridging roles.
Based on these observations, we incorporate degree, closeness,
and betweenness centrality into the FraudCenGCL frame-
work as auxiliary structural features. This integration enriches
node representations with structural semantics, enabling the
model to better capture fraud-specific behavioral patterns and
improve embedding quality and fraud detection performance.

D. Impact of Centrality Measures (RQ.3)

We analyze how individual and combined centrality mea-
sures affect the performance of FraudCenGCL, using BGRL
as the backbone (Table IV). Incorporating all three centrality
types (degree, closeness, and betweenness) achieves the best
overall balance, with the highest F1-score (0.4235) and strong
improvements in precision (0.3214) compared to the baseline.

TABLE IV
PERFORMANCE OF THE BGRL MODEL USING DIFFERENT COMBINATIONS
OF CENTRALITY MEASURES: DEGREE CENTRALITY (DC), CLOSENESS
CENTRALITY (CC), AND BETWEENNESS CENTRALITY (BC).

Centralities  Precision Recall Fl-score AUROC AUPRC
Baseline 0.1177 04211 0.1839  0.7514  0.0852
DC+CC+BC  0.3214 0.6207 0.4235 0.8533  0.3096
DC 0.2754 0.6786 0.3918  0.9430  0.3331

CcC 0.2421  0.7419 0.3651 09172  0.3171

BC 0.2447  0.7419 03680 09171  0.3177
DC+CC 0.2453  0.5200 0.3333  0.8611  0.2433
DC+BC 0.2623  0.5926 0.3636  0.9168  0.2008
CC+BC 0.2391 0.4400 0.3099  0.8802  0.2788

However, the AUROC (0.8533) is lower than that of individual
degree centrality.

When each centrality measure is used in isolation, the
performance gains vary. Degree centrality provides the best
AUROC (0.9430) and AUPRC (0.3331), showing its strength
in ranking quality. Closeness and betweenness centrality yield
the highest recall (0.7419), but their precision is relatively
low, resulting in modest F1-scores (0.3651 and 0.3680). Two-
measure combinations also show unstable behavior: for ex-
ample, DC+CC and DC+BC lead to lower Fl-scores (0.3333
and 0.3636), reflecting a trade-off where recall improves only
slightly while precision drops.

Each centrality offers a distinct structural signal. Degree
centrality captures local connectivity, closeness centrality
measures network reachability, and betweenness centrality
highlights intermediary roles within the transaction graph.
When used together, these perspectives improve the overall
robustness of the model, as seen in the highest Fl-score
from DC+CC+BC. However, partial inclusion of only two
centrality measures can degrade performance, indicating that
complementary information is best exploited when all three
are integrated.

In summary, the integration of all three centrality measures
results in more robust and balanced representations for fraud
detection. Partial inclusion, on the other hand, can lead to
degraded performance, highlighting the importance of holistic
structural modeling in graph-based learning.
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(d) AUPRC. Brighter regions indicate better performance.

E. GNN Architecture Analysis (RQ.4)

We evaluate the impact of the GNN encoder architecture
on the performance of FraudCenGCL, using BGRL as the
backbone model. Figure 5 presents heatmaps of four evalua-
tion metrics (Precision, Recall, F1-score, and AUPRC) across
different combinations of GNN layers and hidden dimensions.

The results indicate that shallow architectures with moder-
ately large hidden dimensions, particularly around 128, consis-
tently yield higher F1-score and AUPRC. These configurations
strike a balance between expressiveness and generalization,
enabling the model to capture structural and behavioral pat-
terns without incurring oversmoothing. Precision also reaches
its peak in this region, while recall tends to favor larger

hidden dimensions such as 512 with two layers. This highlights
that different metrics emphasize different trade-offs, where
wider but shallow networks maximize precision and F1-score,
whereas very large dimensions with two layers maximize
recall but reduce precision.

In summary, under the BGRL backbone, GNN encoders
with one to four layers and hidden dimensions in the range
of 128 to 512 achieve more stable and robust performance.
These observations provide practical guidance for selecting
architectural configurations in graph-based fraud detection
tasks, where balancing sensitivity and specificity is critical.

F. Impact on Representation Space (RQ.5)

To qualitatively assess the impact of FraudCenGCL on the
learned embedding space, we visualize node representations
before and after applying the framework using t-SNE across
six backbone models (Figure 4). Fraudulent accounts are
shown in red and benign accounts in blue.

Overall, FraudCenGCL consistently improves both the
compactness of fraudulent node clusters and their separation
from benign nodes. The improvement is most pronounced
in lightweight backbones such as GBT and GRACE, where
fraudulent nodes form distinctly tighter and more isolated
clusters after applying our framework.

For BGRL and DGI-TRS, the improvements are moderate
but evident, as fraudulent nodes exhibit reduced scattering
and more coherent local clusters. Even in stronger baselines
such as DGI-IND and MVGRL, where the initial separation
of classes was already relatively good, FraudCenGCL yields
noticeable refinements in cluster boundaries and enhances the
clarity of fraudulent node groupings.

These qualitative findings are consistent with the quanti-
tative results reported in Section IV-B. While t-SNE visual-
ization does not directly measure classification performance,
the observed structural refinement of the embedding space



provides clear evidence that centrality-guided augmentation
enhances representation learning and improves the discrim-
inability of fraudulent accounts.

V. CONCLUSION AND FUTURE WORK

In this paper, we present FraudCenGCL, a graph con-
trastive learning framework that integrates behavioral features
with centrality-based structural roles for detecting fraud in
financial transaction networks. Experiments on large-scale
interbank transfer data from the housing finance information
network (HOFINET) in South Korea show consistent improve-
ments across six representative GCL backbones in terms of
precision, recall, F1-score, AUROC, and AUPRC.

Our analysis highlights that fraudulent accounts differ struc-
turally from benign ones by exhibiting mid-level connectivity,
higher reachability, and bridging roles. Incorporating all three
centrality measures yields the most robust gains, while shallow
GNNs with moderately large hidden dimensions provide a
favorable trade-off between precision and recall.

As a limitation, our current framework relies on account-
level labeling derived from transaction-level suspicion flags.
In future work, we plan to extend the framework to directly
model suspicious transactions, integrate temporal dynamics,
and explore cross-institutional graph settings. These directions
will help capture evolving patterns of fraudulent activity at a
finer granularity in real-world financial networks.
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