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Fractal Nodes: Long-Range Message Passing
Without Graph Transformers!

Mitigating over-squashing and enabling long-range interactions at MPNN efficiency.

Motivation: Limitations of MPNNs and Graph Transformers

Table: Comparison of GNN Approaches

Method Long-Range Efficiency Locality
MPNN ✗ O(|E|) ✓

Graph Transformer ✓ O(|V|2) ✗

MPNN + Fractal Nodes ✓ O(|E|) ✓

Key Question: Can we enhance long-range message passing while preserving
MPNN efficiency?
Our Answer: Yes! Graph partitioning induces fractal structure that enables
long-range interactions.

Main Idea: Fractal Nodes Architecture

Figure: Fractal nodes ( A , A , A ) coexist with original nodes, aggregate subgraph-level
features, and enable long-range interactions via MLP-Mixer (orange dashed lines).

Method: Message Passing with Fractal Nodes

Three-step update process:
h̃(ℓ+1)v,c = φ(ℓ)(h(ℓ)v,c, ψ

(ℓ)({h(ℓ)u,c : u ∈ Nv})) (Node update) (1)
f (ℓ+1)c = LPF({hv,c})︸ ︷︷ ︸

Sub-global

+ω(ℓ)
c · HPF({hv,c})︸ ︷︷ ︸

Local

(Fractal node) (2)

h(ℓ+1)v,c = φ̃(ℓ)(h̃(ℓ+1)v,c , f (ℓ+1)c ) (Final update) (3)

Key Insight: Mean pooling captures only the DC component (0-th Fourier
basis, i.e., constant/average). Our fractal nodes capture richer subgraph-
level frequency information:
▶ LPF = 1

|Vc|
∑

v∈Vc hv: DC component (sub-global mean)
▶ HPF = hv − LPF: Higher-freq components (deviation from mean)
▶ ω

(ℓ)
c : Learnable weight balancing low + high freq

⇒ FN: fractal nodes only.
⇒ FNM : + MLP-Mixer for inter-subgraph interaction.

Theoretical Analysis: Over-squashing Mitigation

Over-squashing: information from distant nodes compressed into fixed-size
vectors. Fractal nodes mitigate this by reducing effective resistance.

Theorem 1: For augmented graph Gf with fractal nodes: Rf(u, v) ≤ R(u, v)
→ Adding fractal nodes creates shortcuts that lower effective resistance between nodes.

Theorem 2: After ℓ layers: ∥h(ℓ)u − h
(ℓ)
v ∥ ≤ exp(−ℓ/Rf(u, v))∥h(0)u − h

(0)
v ∥

→ Lower resistance enables faster signal propagation between distant node pairs.

Empirical Analysis:
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Figure: (a) GCN+FNM maintains higher signal flow. (b) MPNNs fail for r > 3.

Properties of Fractal Nodes

Frequency Response
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Fractal nodes preserve high-frequency
information that mean pooling discards.

Fractal Structure
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Structural similarity increases with the
number of subgraphs C.

Expressive Power: Beyond 1-WL Test

Method CSL SR25 EXP
GCN 10.00 6.67 52.17
GINE 10.00 6.67 51.35
GatedGCN 10.00 6.67 51.25
GCN + FNM 39.67 100.0 86.40
GINE + FNM 47.33 100.0 95.58
GatedGCN + FNM 49.67 100.0 96.50

1-WL SWL

FN

100% on SR25!
(MPNNs: 6.67%)

⇒ Standard MPNNs fail on graphs indistinguishable by 1-3 WL tests!

Experimental Results: Graph-Level Benchmarks

Table: Performance comparison on 6 benchmark datasets

Method PEP-FUNC PEP-STRUCT MNIST CIFAR10 MOLHIV MOLTOX21
AP ↑ MAE ↓ Acc ↑ Acc ↑ ROC ↑ ROC ↑

GCN 0.6328 0.2758 0.9269 0.5423 0.7529 0.7525
GINE 0.6405 0.2780 0.9705 0.6131 0.7885 0.7730
GatedGCN 0.6300 0.2778 0.9776 0.6628 0.7874 0.7641
GraphGPS 0.6534 0.2509 0.9805 0.7230 0.7880 0.7570
GRIT 0.6988 0.2460 0.9811 0.7647 - -
Graph-ViT 0.6970 0.2449 0.9846 0.7158 0.7997 0.7910
Exphormer 0.6527 0.2481 0.9841 0.7469 - -
GECO 0.6975 0.2464 - - 0.7980 -
GNN-AK+ 0.6480 0.2736 - 0.7219 0.7961 -
CRaWl 0.6963 0.2506 0.9794 0.6901 0.7707 -
GCN + FNM 0.6787 0.2464 0.9455 0.6413 0.7866 0.7882
GINE+FNM 0.7018 0.2446 0.9786 0.6672 0.8127 0.7926
GatedGCN+FNM 0.6950 0.2453 0.9848 0.7526 0.8097 0.7922

⇒ Fractal nodes outperform Graph Transformers and Subgraph-based methods!

Large-Scale Node Classification & Efficiency

Table: Results on large-scale graphs (%)

Method ogbn-arxiv ogbn-products
GraphGPS 70.97 OOM
Exphormer 72.44 OOM
GCN 71.74 75.64
GCN + FN 73.03 81.29
GraphSAGE + FNM 72.54 83.11

Table: Runtime & Memory (ogbn-arxiv)

Method Time (s) Mem (GB)
GCN 1.27 16.49
GraphGPS 1.32 38.91
Exphormer 0.74 34.04
GCN + FN 1.27 16.49
GCN + FNM 1.27 16.49

⇒ Graph Transformers fail to scale (OOM), while Fractal Nodes maintain zero
overhead!

Comparison with Graph Rewiring Methods & Virtual Nodes

Method PEP-FUNC PEP-STRUCT

AP ↑ MAE ↓
GCN 0.5930±0.0023 0.3496±0.0013

+ FoSR 0.5947±0.0035 0.3473±0.0007

+ SDRF 0.5947±0.0126 0.3478±0.0013

+ BORF 0.5994±0.0037 0.3514±0.0009

+ PANDA 0.6028±0.0031 0.3272±0.0001

+ LASER 0.6440±0.0010 0.3043±0.0019

+ FN 0.6445±0.0057 0.2535±0.0012

Table: GCN + Rewiring methods

Method PEP-FUNC PEP-STRUCT

AP ↑ MAE ↓
GCN + VN 0.6455±0.0060 0.2745±0.0015

GINE + VN 0.6575±0.0080 0.2683±0.0020

GatedGCN + VN 0.6823±0.0075 0.2475±0.0012

GatedGCN + VNG 0.6822±0.0077 0.2458±0.0017

GCN + FNM 0.6787±0.0048 0.2464±0.0014

GINE + FNM 0.7018±0.0074 0.2446±0.0018

Table: Virtual Node methods

⇒ Fractal nodes outperform both graph rewiring and virtual node approaches!


