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Fractal Nodes: Long-Range Message Passing |G
Without Graph Transformers!

Motivation: Limitations of MPNNs and Graph Transformers Properties of Fractal Nodes

Frequency Response

Table: Comparison of GNN Approaches
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Our Answer: Yes! Graph partitioning induces fractal structure that enables _ o .
. : Fractal nodes preserve high-frequency Structural similarity increases with the
long-range interactions. . . L
information that mean pooling discards. number of subgraphs C'

Main Idea: Fractal Nodes Architecture

Expressive Power: Beyond 1-WL Test

Q
Method CSL SR25 EXP F
GCN 10.00 6.67 52.17
) GINE 10.00 6.67 51.35
Va0 GatedGCN 10.00 6.67 51.25 @ SW
4> 0 O GCN + FNj;, 39.67 100.0 86.40
GINE + FN 47.33 100.0 95.58
GatedGCN + FN,, 49.67 100.0 96.50 100% on SR25!
Figure: Fractal nodes (C), © ), ¢ ) coexist with original nodes, aggregate subgraph-level (MPNNs: 6.67%)
features, and enable long-range interactions via MLP-Mixer ( ). = Standard MPNNs fail on graphs indistinguishable by 1-3 WL tests!

Method: Message Passing with Fractal Nodes Experimental Results: Graph-Level Benchmarks

Three-step update process:
by = @ (hya, 0O (R w € No))

Table: Performance comparison on 6 benchmark datasets
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(Node update)

v,c Method
FY = LPF({h, . }) +w'" - HPF({h,.})  (Fractal node) (2) APT  MAE) AccT Acct ROCT ROCT
N — GCN 0.6328  0.2758 0.9269 0.5423 0.7529 0.7525
(+1) _ ~(0) 7 (+1) p(6+1) . GINE 0.6405  0.2780 0.9705 0.6131 0.7885 0.7730
hye =@ e s o) (Final update) (3) GatedGCN 0.6300  0.2778 0.9776 0.6628 0.7874 0.7641
GraphGPS 0.6534  0.2509 0.9805 0.7230 0.7880 0.7570
Key Insight: Mean pooling captures only the DC component (0-th Fourier gR'Th . 8-2838 g-gjﬁg g-gglé 8-;?‘5‘; 07097 07010
P - i raph-Vi . . . . . .
basis, I.e., constant/average). Our fractal nodes capture richer subgraph Exphormer 06507 09481 09841 07469 _ _
level frequency information: GECO 06975 0 2464 ) ] 0.7980
1 .
> LPF = 57> .y, i DG component (sub-global mean) GNN-AK+ 0.6480  0.2736 - 07219 0.7961
» HPF = h, — LPF: Higher-freq components (deviation from mean) CRaWi 0.6963 0.2506  0.9794 0.6901 0.7707 -
» " Learnable weight balancing low + high freq GCN + FNy, 0.6787  0.2464 0.9455 0.6413 0.7866 0.7882
___  nod I GINE+FN,, 0.7018  0.2446 0.9786 0.6672 0.8127 0.7926
= FNIfractal nodes only. GatedGCN+FN,, 0.6950  0.2453 0.9848 0.7526 0.8097 0.7922

= FN,;: + MLP-Mixer for inter-subgraph interaction.

Theoretical Analysis: Over-squashing Mitigation

Over-squashing: information from distant nodes compressed into fixed-size

=- Fractal nodes outperform Graph Transformers and Subgraph-based methods!

Table: Results on large-scale graphs (%)

Large-Scale Node Classification & Efficiency

Table: Runtime & Memory (ogbn-arxiv)

vectors. Fractal nodes mitigate this by reducing effective resistance. Method ogbn-arxiv ogbn-products Method  Time (s) Mem (GB)
GraphGPS 70.97 OOM GCN 1.27 16.49
. : . Exphormer 72.44 OOM GraphGPS  1.32 38.91
Thpe‘or.err: 1: ITor augmentedhgraph ghf vlwth frafc;‘tal _nodes:. Rf(u,bv) < R(u,dv) GON 21 74 -r 64 Exphormer 074 34.04
— Adding fractal nodes creates shortcuts that lower effective resistance between nodes. GCN 2 FN 2303 81 29 GCN 2 FN 1 57 16.49
GraphSAGE + FN,, 72.54 83.11 GCN +FN,, 1.27  16.49

Theorem 2: After ¢ layers: ||h) — hY|| < exp(—¢/R(u,v))||hY — 1|

— Lower resistance enables faster signal propagation between distant node pairs. = Graph Transformers fail to scale (OOM), while Fractal Nodes maintain zero

overhead!

Empirical Analysis:

Comparison with Graph Rewiring Methods & Virtual Nodes
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Normalized Ryt r (the problem radius)

Table: GCN + Rewiring methods Table: Virtual Node methoas

(a) Signal propagation on PEPTIDES-FUNC
Figure: (a) GCN+FN,, maintains higher signal flow. (b) MPNNs fail for r > 3.

(b) TreeNeighbourMatch accuracy o _
= Fractal nodes outperform both graph rewiring and virtual node approaches!




